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1 Lecture 1: Introduction, Phase Transitions and the

Ising Model

1.1 Lecture 1 Notes

We started out by looking at a simulation of the Ising model on a subset of Z2. We observed
that at one setting of some parameter β, the configurations looked pretty “random,” and at
another choice of β, the configurations looked pretty structured or ordered.

1.1.1 Spin Models on Graphs

We set

• G = (V,E) a graph,

• Ω is a set of spins,

• σ : V → Ω is a spin configuration.

We are interested in describing the “typical” spin configurations, which tells us we should use
randomness. So we define a probability distribution.

Examples

(1) Ising model

• Ω = {+1,−1}

• σ : V → Ω is a 2-coloring of V

• M(G, σ) := number of monochromatic edges

• β := inverse temperature (we will only consider β > 0).

• Gibbs measure µG,β(σ) ∝ eβM(G,σ) i.e.

µG,β(σ) =
eβM(G,σ)∑

χ:V→Ω eβM(G,χ)
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• partition function ZG(β) =
∑

χ:V→Ω eβM(G,χ)

Why does the definition of Gibbs measure make sense?

• High temperature: When β is small, e.g. β → 0, µG approaches the uniform distribution
over all spin configurations. This is intuitively what we expect from something “gaseous”
or disordered.

• Low temperature: When β is large, e.g. β → ∞, µG approaches the uniform distribution
over the configurations with the maximum number of monochromatic edges, i.e. the all-
monochromatic configurations. This is again intuitively what we expect from something
“solid” or ordered.

(2) Potts model
The Potts model is a generalization of the Ising model to q colors.

• Ω = {1, 2, . . . , q} =: [q]

• σ : V → Ω is a q-coloring of V

We define the Gibbs measure and partition function to be the same as for the Ising model.
(3) Hardcore model
This is a distribution on independent sets of a graph. An independent set I ⊂ V (G)

is a set of vertices such that no two vertices in I are adjacent (meaning no two vertices in I
have an edge between them).

• I(G) is the collection of independent sets in G

• λ > 0 is the activity or fugacity

• Gibbs measure µG,λ(I) ∝ λ|I|

• ZG(λ) =
∑

J∈I(G) λ
|J |

Observe: we can rewrite ZG(λ) =
∑

k≥0 ik(G)λk where ik(G) is the number of independent
sets of size k in G. In this form, ZG(λ) is commonly known as the independence polynomial
of the graph G and is well-studied in graph theory.

The hardcore model is also a spin model, under the following framework:
General framework:

• Hamiltonian H(σ) =
∑

v∈V f(σv) +
∑

uv∈E g(σu, σv) for some f, g (σv denotes the spin
of the vertex v).

• Gibbs measure µG,β(σ) ∝ e−βH(σ)

Exercise 1 is to write the hardcore model in this framework. Hint: we can use spins
Ω = {0, 1} and let the vertices in I be those with spin 1. Also note that we are allowed to
have ∞ in the image of f or g.

3



1.1.2 Ising Model on Zd

For more on this section, see Friedli-Velenik textbook in the references.
A main question of interest to statistical physicists is about the notion of phase transitions.

Does there exist one? How would we describe it mathematically? There are several ways.
One thing to note is that a phase transition is a phenomenon of infinite graphs, or a limiting
phenomenon of finite graphs.

Let Λn denote the box of sidelength n in Zd. Let µτ
Λn

be the Gibbs measure on Λn with
boundary conditions τ .

Fact: The measures µτ
Λn

converge weakly to a measure µτ
∞, called an infinite volume Gibbs

measure. (This result holds for general infinite G as long as the regions Λn converge in the
sense of van Hove to the infinite graph. This is not always the case; for example, the infinite
d-regular tree does not have such a sequence of subgraphs.)

We say a phase transition occurs at β = βc if for

• β < βc, there exists a unique infinite volume Gibbs measure

• β > βc, there exist multiple infinite volume Gibbs measures

Theorem 1.1 (Peierls 1936). The Ising model in Zd has a phase transition if d ≥ 2.

This is actually an if and only if statement; for d = 1, Ising proved in his 1924 PhD
thesis that exponential decay of correlations holds for all β, which implies there is no phase
transition.

Proof. We will prove the low-temperature statement, i.e. if β is large, there must be more
than one infinite volume Gibbs measure. We will do this by showing that the all +1 and all
−1 boundary conditions give rise to distinct infinite volume measures. To show that they are
different, we analyze E[στ

0 ], the expected spin at the origin.
Let’s first consider the all +1 boundary conditions. We will rewrite the Ising model and

think about bichromatic edges instead.

• B(G, σ) = number of bichromatic edges of σ

• µG,β(σ) ∝ e−βB(G,σ)

We define something called contours by doing the following:

• Draw a unit box around each −1 spin in the dual lattice (place a vertex in the center of
each grid square and connect vertices in adjacent grid squares).

• Erase edges separating adjacent −1 spins.

• Round off corners in an unambiguous way e.g. if a northeast and southwest corner meet,
merge them, and if a northwest and southeast corner meet, separate them.
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Check: this results in a collection of nonintersecting simply connected closed curves. Spins
are constant on the regions defined by these curves. Given a collection of contours and the
boundary conditions, then, we can recover the original spin configuration.

Main point: The contour edges from this process are in bijective correspondence with the
bichromatic edges of σ. So we can rewrite the Ising model as a contour model: if Γ is a
collection of contours, then the probability of Γ can be written as

µ+
Λn
(Γ) =

∏
γ∈Γ e

−β|γ|∑
Γ′
∏

γ∈Γ′ e−β|γ|

where the sum in the denominator is over all collections of contours.
Now we consider the probability that the origin gets spin −1. If we can show this proba-

bility is small, then we get that the expected spin at the origin is positive.
Exercise: The origin receives spin −1 if and only if the origin is inside an odd number of
contours.

Thus,

µ+
Λn
(σ0 = −1) = µ+

Λn
(0 is in an odd number of contours)

≤ µ+
Λn
(0 is in some contour)

= µ+
Λn
({Γ : there exists γ⋆ ∈ Γ such that 0 ∈ Int(γ⋆)})

≤
∑

γ⋆:0∈Int(γ⋆)

∑
Γ∋γ⋆

µ+
Λn
(Γ)

where Int(γ⋆) refers to the interior of the contour, meaning the vertices inside the region
whose boundary is γ⋆. In the last inequality, we use a first moment bound.

Exercise/Claim: ∑
Γ∋γ⋆

µ+
Λn
(Γ) ≤ e−β|γ⋆|

Hint: To prove this, write out µ+
Λn
(Γ) using the definition of our contour model Gibbs

measure. Factor out e−β|γ⋆| from the numerator. Show that the remaining terms are ≤ 1 by
finding an injection from the terms in the numerator to the terms in the denominator.

Assuming the claim holds, we now have

µ+
Λn
(σ0 = −1) ≤

∑
γ⋆:0∈Int(γ⋆)

e−β|γ⋆|

To bound this sum, we split up the terms according to the length (number of edges) in the
contour. Observe that the shortest contour surrounding 0 must have 4 edges.

µ+
Λn
(σ0 = −1) ≤

∑
k≥4

∑
γ⋆:0∈Int(γ⋆),|γ⋆|=k

e−βk
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Now we estimate the number of terms in the inner sum.

Exercise: Show that the number of contours of length k with 0 in its interior is at most
k
2
· 4 · 3k−1 (this type of estimate is often referred to as Peierls’ method).

We then have

µ+
Λn
(σ0 = −1) ≤

∑
k≥4

k

2
· 4 · 3k−1e−βk

For β large enough, this series converges and we can conclude that µ+
Λn
(σ0 = −1) is “small”

which tells us that E[σ+
0 ] > δ for some δ > 0. But by symmetry, we can run this proof for the

all −1 boundary conditions to conclude that E[σ−
0 ] < −δ, which tells us that there are two

distinct infinite volume Gibbs measures!

The Peierls method has since been applied in many different contexts. One significant
application is in percolation theory, related to the threshold of the existence of an infinite
connected component in Zd. A quite different application is in recent work on the reconstruc-
tion of random binary grids. Links to these two examples are in the references section.

1.2 Lecture 1 References

• phase transitions and Peierls argument: Friedli–Velenik, section 3.2.7; https://www.
unige.ch/math/folks/velenik/smbook/

• Percolation: lecture notes of Perla Sousi,
http://www.statslab.cam.ac.uk/~ps422/percolation.html;
lecture notes of Hugo Duminil-Copin,
https://www.ihes.fr/~duminil/publi/2017percolation.pdf

• Reconstructing random pictures (Narayanan, Y.): https://arxiv.org/abs/2210.09410

1.3 Lecture 1 Exercises

1. Write the hardcore model as a spin model on a graph by determining the Hamiltonian
and Gibbs measure.

2. Compute the hard-core partition function for:

(a) Kd, the complete graph (clique) on d vertices

(b) Kd,d, the complete d-regular bipartite graph (two sets of d vertices L and R with
all d2 edges between L and R present and no others)

(c) C6, the cycle on six vertices

3. Let G = G1 ∪G2, the disjoint union of two graphs G1, G2. Prove that

ZG(λ) = ZG1(λ)ZG2(λ) .
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4. Prove the following claim we used in the Peierls argument for phase coexistence of the
low-temperature Ising model on Z2: Fix a contour γ⋆ containing 0 in its interior. Let
µ+
Λn

be the Gibbs measure defined on collections of contours on the n× n box with all
+ boundary conditions. Show that∑

Γ∋γ⋆

µ+
Λn
(Γ) ≤ e−β|γ⋆|

5. Show that the number of contours of length k with 0 in its interior is at most k
2
· 4 · 3k−1

(this type of estimate is often referred to as Peierls’ method).

6. Consider percolation on Z2 with probability p. Let C(0) denote the connected component
containing 0. Define the threshold

pc = sup{p ∈ [0, 1] : Pp(|C(0)| = ∞) = 0}

Use Peierls’ method (namely, the previous exercise) to show that pc < 1.

2 Lecture 2: Extremal Combinatorics and the Hard-

core Model

2.1 Lecture 2 Notes

Today we will focus on the hardcore model and applications to extremal combinatorics. The
main questions of interest in extremal combinatorics are about the maximum or minimum of
certain quantities related to discrete structures, and what structures achieve these extrema.
One of the most classical/foundational examples is the following:
Question: What is the maximum number of edges in an n-vertex triangle-free graph?

Theorem 2.1 (Mantel). The maximum number of edges in an n-vertex triangle-free graph is
n2

4
. This is achieved by the complete bipartite graph on parts of size n/2.

We are going to discuss extremal questions about independent sets in d-regular graphs.
Throughout, fix n, d, and G a d-regular graph. Let i(G) be the number of independent sets
in G.

Recall the partition function of the hardcore model is ZG(λ) =
∑

J∈I(G) λ
|J |. This is in

some sense a combinatorial encoding of our model; we saw that ZG(λ) is the same as the
independence polynomial of G, and we also have ZG(1) = i(G).
Question: What is the maximum number of independent sets in a d-regular graph?

Theorem 2.2 (Kahn 2001). If G is bipartite, then

i(G) ≤ i(Hd,n)

where Hd,n is the graph consisting of n/2d copies of Kd,d.
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Kahn proved this using the entropy method. Observe that

i(G) ≤ i(Hd,n)

⇔ ZG(1) ≤ ZHd,n
(1)

⇐ ZG(λ) ≤ ZHd,n
(λ) = (ZKd,d

(λ))n/2d

⇔ logZG(λ) ≤
n

2d
logZKd,d

(λ)

Theorem 2.3 (Galvin–Tetali 2004). If G is bipartite, then

1

n
logZG(λ) ≤

1

2d
logZKd,d

(λ)

for all λ > 0.

Theorem 2.4 (Zhao 2010). The above holds for general d-regular graphs G.

We discuss the proof of a stronger result which uses the context of the hardcore model.

2.1.1 The Occupancy Method

Let αG(λ) := 1
n
E[|I|] be the occupancy fraction i.e. the expected fraction of vertices

contained in an independent set drawn from the hardcore model. Using the definition of
expectation, we can rewrite it as

αG(λ) =
1

n

∑
I∈I(G)

|I|µG,λ(I)

=
1

n

∑
I∈I(G)

|I| λ|I|

ZG(λ)

=
1

n

λ

ZG(λ)

∑
I∈I(G)

|I|λ|I|−1

=
1

n

λ

ZG(λ)
(ZG(λ))

′

=
λ

n
(logZG(λ))

′

Thus, the following result implies the previous three theorems:

Theorem 2.5 (Davies–Jenssen–Perkins–Roberts 2015).

αG(λ) ≤ αKd,d
(λ)

for all λ > 0 and d-regular G.
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Proof Sketch. To simplify things, we will assume that G is triangle-free.
Let’s analyze αG(λ), this time using linearity of expectation. Say a vertex is blocked if at

least one of its neighbors is in I and unblocked otherwise. A simple but key observation is
that a blocked vertex cannot be added to I. For notational ease, let P = µG,λ.

αG(λ) =
∑
v∈V

P(v ∈ I)

=
∑
v∈V

P(v ∈ I|v is unblocked) · P(v is unblocked)

where in the last line, we use the Law of Total Probability.
Now we apply a key property of the hardcore model (which is also true of Gibbs measure

in general), which is that it is a Markov random field. This means that if we partition V (G) as
A∪B∪C such that A and C have no edges between them, then the spins in A are independent
of the spins in C. In our context, this means that if we condition on N(v) = {u : uv ∈ E},
the spin at v is independent of the rest of the graph.

Thus, P(v ∈ I|v is unblocked) is simply the probability that v ∈ I for I chosen from a
single-vertex graph. This probability is

P(v ∈ I|v is unblocked) =
λ

1 + λ

The remaining term to analyze is P(v is unblocked). We again use conditioning to rewrite
this

P(v is unblocked) = P(v is unblocked|v has j unblocked neighbors) · P(v has j unblocked neighbors)

=
1

(1 + λ)j
P(v has j unblocked neighbors)

The last line is by the same reasoning as before, using the Markov random field property
along with our assumption that G is triangle-free. Putting everything together, we get

αG(λ) =
∑
v∈V

λ

1 + λ

1

(1 + λ)j
P(v has j unblocked neighbors)

Pulling the λ
1+λ

term outside of the summation, here is the key observation: the remaining

summation is exactly E[ 1
(1+λ)Y

] where Y is the random variable that counts the number of
unblocked neighbors of a uniformly random vertex.

We now rewrite αG(λ) in a second way, to obtain constraints for our random variable
Y . Indeed, we can use linearity of expectation again but counting from the perspective of

9



neighborhoods to write

αG(λ) =
1

n

∑
v∈V

1

d

∑
u∈N(v)

P(u ∈ I)

=
1

n

∑
v∈V

1

d

∑
u∈N(v)

λ

1 + λ
P(uunblocked)

where the last line is again by conditioning on u being unblocked. Pulling the λ
1+λ

to the
outside, we can see that the inner summation is simply E[Y ].

We thus have the relationship

1

d
E[Y ] = E[(1 + λ)−Y

The remainder of the proof uses linear programming. We obtain a set of linear constraints
on the random variable Y . We then relax the optimization problem: instead of considering
just Y arising from graphs, we consider Y arising from any probability distribution, subject
to the constraints and 0 ≤ Y ≤ d. Using LP duality, we find a unique maximizer for α, and
because this maximizer actually does correspond to a distribution from a graph (specifically
Kd,d), we can conclude that Kd,d is the extremal graph.

We now briefly introduce a different statistical physics method which allows us to prove
an even stronger result, on the level of coefficients.

2.1.2 Cluster Expansion

The cluster expansion is a tool for describing “perturbative” models, such as in settings
where we have weakly dependent random variables and want to measure deviations from the
independent setting. The main idea is to write 1

n
logZG(λ) (also called the free energy) as a

(hopefully convergent!) series expansion.

Theorem 2.6 (Davies–Jenssen–Perkins 2021). For n large enough, all d-regular n-vertex
graphs G, and all k,

ik(G) ≤ ik(Hd,n)

They also show the analogous statement for matchings, which is more commonly known
as the Upper Matching Conjecture.

The proof idea uses the cluster expansion. Roughly, we want to bound ik(Hd,n) − ik(G).
Although ik(G) is not the partition function of the hardcore model, it turns out we can write
it as the partition function of a different model, called a polymer model. We take the cluster
expansion and use the combinatorial description to argue that the series is mainly determined
by the density of cycles Cg and Cg−1 where girth(G) ≥ g − 1.

We did not have time to go into the details, but here are some formal definitions for your
reference:
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As an example, consider the “ideal” hard-core model whereG is simply n singleton vertices.
Then ZG(λ) = (1 + λ)n. In this case, we know from calculus that

1

n
logZG(λ) = log(1 + λ) = λ− λ2

2
+

λ3

3
− · · ·

and that this converges if |λ| < 1.
We will see how we can write the free energy as a formal power series even when we are not

in this ideal setting, and some nice combinatorial conditions for computation and convergence.
Setup: We will define the expansion for the multivariate hardcore model.

• λ⃗ = (λv)v∈V is a tuple of activities assigned to each vertex,

• ZG(λ⃗) =
∑

I∈I(G)

∏
v∈I λv (taking λv = λ for all v gives us our original HC model)

• Γ is a tuple of vertices in G (allowing repeats)

• H(Γ) is the incompatibility graph of Γ. The vertices are those in the tuple Γ (with
multiplicities). Place an edge between two copies of the same vertex and between vertices
which form an edge in G.

• a cluster is a tuple Γ such that H(Γ) is connected

• the Ursell function is

ϕ(H) =
1

|V (H)|!
∑

A⊂E(H),
(V (H),A) connected

(−1)|A|

The cluster expansion is then

logZG(λ⃗) =
∑

clusters Γ

ϕ(H(Γ))
∏
v∈Γ

λv

For the derivation, see Friedli–Velenik, Chapter 5.
Example: Let G be a singleton vertex v. The possible tuples are (v), (v, v), (v, v, v), . . . . If
Γ is a k-tuple of v’s, then H(Γ) = Kk so each such Γ is a cluster.

Exercise: ϕ(Kk) =
1
k!
(k − 1)!(−1)k+1

Then logZG(λ) =
∑

k
λk

k
(−1)k+1 as we determined previously.

2.2 Lecture 2 References

• a survey on extremal regular graphs for independent sets by Yufei Zhao, https://

yufeizhao.com/research/extremal-regular-graphs.pdf
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• the entropy method: lecture notes of David Galvin, https://arxiv.org/abs/1406.
7872

• the occupancy method (Davies, Jenssen, Perkins, and Roberts): https://arxiv.org/
abs/1508.04675

• the cluster expansion: Friedli-Velenik, chapter 5, https://www.unige.ch/math/folks/
velenik/smbook/

• the Upper Matching Conjecture (Davies, Jenssen, Perkins): https://arxiv.org/abs/
2004.06695

2.3 Lecture 2 Exercises

1. Prove that the following probability distribution on independent sets of G is the hard-
core model on G at fugacity λ. Pick a subset S ⊆ V (G) by including each vertex
independently with probability λ

1+λ
and condition on the event that S is an independent

set.

2. Let ik(G) be the number of independent sets of size k in a graph G.

(a) Give a probabilistic interpretation (as, say, an expectation) for the quantity ik+1(G)

ik(G)

in terms of the uniform distribution over independent sets of size k in G.

(b) Prove that for all G of maximum degree ∆ on n vertices,

ik+1(G)

ik(G)
≥ n− (∆ + 1)k

k + 1
,

and find a family of graphs for which the inequality is tight.

(c) Use the above to prove that for all G of maximum degree ∆ on n vertices,

1

n
logZG(λ) ≥

1

∆ + 1
log(1 + (∆ + 1)λ) ,

and show that the inequality is tight. (Hint: recall that partition functions are
multiplicative over disjoint graphs and that ZG(λ) is a polynomial).

3. If you read about the definition of cluster expansion from the notes: Write the cluster
expansion for 1

n
logZG(λ) (where ZG(λ) is the hard-core partition function) when G is

(a) a single vertex (show that the Ursell function is what we claimed in the notes)

(b) a single edge

(c) a ∆-regular triangle-free graph (compute clusters up to size 3)
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3 Lecture 3: Algorithms and the Potts Model

3.1 Lecture 3 Notes

From yesterday, recall that the cluster expansion is a series expansion for logZG(λ). We will
not utilize the specific definition of the expansion, but simply keep in mind that the cluster
expansion is a combinatorial quantity, in that the coefficients are computed according to some
connected subgraph structures (clusters and incompatibility graphs).

It turns out that we can define the cluster expansion not only for the (multivariate)
hardcore model but also for more general models called ”abstract polymer models.” As the
name suggests, these are more abstract in some sense but the advantage is that we can often
rewrite other Gibbs measures in the framework of an abstract polymer model, and this allows
us to take advantage of the cluster expansion tools.

3.1.1 Algorithms

Two main algorithmic questions associated with spin models are about approximate counting
and sampling. The counting problem refers to computing the partition function ZG. The
sampling problem refers to producing samples from the Gibbs distribution µG. Exact compu-
tation of ZG is #P-hard in general, so we are mainly concerned with approximate counting
and sampling.

Given δ > 0, a δ-relative approximation of Z is some Ẑ such that e−δẐ ≤ Z ≤ eδẐ. An
FPTAS (a fully polynomial-time approximation scheme) for computing a partition function
ZG is an algorithm whose output is a δ-relative approximation of ZG and that runs in time
polynomial in 1

δ
, n.

Given δ > 0, a polynomial-time sampling scheme for µG is a randomized algorithm
whose output is a spin configuration σ according to distribution µ̂ such that ∥µG − µ̂∥TV < δ
and that runs in time polynomial in 1

δ
, n.

For many models that we are interested in (including all three covered in these notes), the
problems of approximate counting and sampling are equivalent—that is, given an algorithm
for one, you can produce an algorithm for the other.

Exercise: Prove that approximate counting and approximate sampling are equivalent for
the hardcore model.

There are three general classes of spin models with respect to efficient approximation
algorithms:

1. there exists an efficient algorithm for all graphs. The main question here is to find
deterministic algorithms, since many of the known algorithms are randomized (e.g. the
ferromagnetic Ising model, the monomer-dimer model)

2. the approximate counting problem is NP-hard in general but there exist subclasses
of graphs or regimes of temperatures where efficient algorithms exist (e.g. hardcore
model—see reference for Weitz–Sly)
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3. not known to be NP-hard but also no efficient algorithms (random or deterministic) are
known in general (e.g. ferromagnetic Potts)

The last category includes the complexity class #BIS, which stands for Bipartite Indepen-
dent Set–the problem of approximating the number of independent sets in a bipartite graph.
The complexity of #BIS is open.

There are several avenues to producing efficient algorithms. One which we will not discuss
here involves Markov chains, primarily two called the Glabuer dynamics and the Swendsen–
Wang dynamics. There has been a lot of work determining fast or slow mixing of these Markov
chains on different classes of graphs or regimes of temperatures. Another avenue comes from
Weitz and is called the method of “correlation decay.”

We will focus on the method of cluster expansion, which came about quite recently with
the following landmark result (which I will not state in full detail here):

Theorem 3.1 (Helmuth–Perkins–Regts 2019). Under some mild conditions, a convergent
cluster expansion for a partition function ZG gives an FPTAS for ZG.

The idea is to essentially truncate the series expansion and compute the coefficients in
polynomial time. This requires that, for example, the runtime of computing log(t) many
coefficients scales appropriately with t.

We will apply the above theorem as a black box, but this will motivate our study of the
Potts model—our goal will be to put the Potts in the framework of an abstract polymer
model, and then to show that the cluster expansion converges.

3.1.2 The Potts Model on Expanders

The following will be the main theorem of this section: we say a graph G is an η-expander if
for every A ⊂ V (G) such that |A| ≤ n

2
, we have |∇(A)| ≥ η|A|.

Theorem 3.2 (Carlson–Davies–Fraiman–Kolla–Potukuchi–Y. 2022). For all ϵ > 0, there
exists d large enough and an absolute constant C such that for q ≥ dC and for

• β ≤ (1− ϵ)β0 (high-temperature)

• β ≥ (1 + ϵ)β0 (low-temperature)

there exists an FPTAS for the q-color Potts model on d-regular 2-expander graphs.

For comparison to previous results, Helmuth–Jenssen–Perkins also show the existence of
an FPTAS for the Potts model but requiring q exponential in d and Ω(d) expansion of G.
However, they obtain algorithms at all temperatures, rather than the gap we have around β0.
Their results are also obtained in the greater generality of the random cluster model.

We will focus on the low-temperature proof, which requires some combinatorial tools.
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Low Temperature Proof
Throughout, let G be a d-regular 2-expander. Recall that at low temperatures, we expect

the most likely colorings to be the all-monochromatic ones, or small deviations from these.
We will show that this is reflected in the partition function.

For 1 ≤ i ≤ q, let Si = {σ : |σ−1(i)| ≥ n/2} (the colorings with “majority color” i), and
let S0 be the remaining colorings. We argue that∑

σ∈S0
eβM(G,σ)

ZG(q, β)

is small (in fact, less than q−Ω(ϵn/d)). Recall that B(G, σ) is the number of bichromatic (i.e.
non-monochromatic) edges of σ. We break up the sum in the numerator as∑

k≥1

∑
σ∈S0:B(G,σ)=k

eβM(G,σ)

We can bound the number of terms in the inner sum using the following lemma:

Lemma 3.3. The number of q-colorings with exactly k bichromatic edges is at most
(

n
2k/d

)
q2k/d.

Proof. The proof is an adaptation of Karger’s randomized algorithm for computing min-cut
of a graph. We sketch the proof here and leave verification of the details to the exercises.

Fix σ with k bichromatic edges. We produce a random coloring σ′ and analyze the
probability that it is equal to σ:

1. Choose an edge of G uniformly at random and contract it. Delete self-loops. Repeat
this step until |V | ≤ 2k

d
.

2. Color the remaining vertices by assigning each vertex a color independently and uni-
formly at random.

Observe that the coloring of the contracted graph maps back to a coloring of the original
graph. Call this coloring σ′. To get a lower bound on P(σ′ = σ), observe that we need the k
bichromatic edges to remain uncontracted. The probability of this is at least(

1− k

nd/2

)(
1− k

(n− 1)d/2

)
· · ·

(
d

2k

)
Here we use our expansion assumption (and actually, we only need a much weaker condition
about the size of the min-cut). We also need the vertices to receive the correct colors at the
end, and this has probability at least q−2k/d. The result follows.

Plugging in the above bound, we are able to show a sufficiently small upper bound on the
weight of colorings in S0. We omit the details here.
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Abstract Polymer Model:
We now put the low-temperature Potts model in the framework of something called an ab-

stract polymer model. This will allow us to apply the Helmuth–Perkins–Regts result, assuming
we can show that the cluster expansion converges.

To define an abstract polymer model, we need three components: polymers, a compati-
bility relation, and weights. Our model will capture the “deviations” of colorings from the
ground states, which are the q all-monochromatic colorings.

• polymer γ: a connected subgraph on at most n/2 vertices (representing the components
that do not receive the majority color)

• compatibility: γ ∼ γ′ iff distG(γ, γ
′) ≥ 2 (i.e. when γ and γ′ can be separate components

in the same coloring)

• weight: wγ = e−β(eγ+∇γ)Zγ(q − 1, β) (the contribution of γ to the total weight of a
coloring, where eγ is the number of edges induced by γ and∇γ is the number of boundary
edges)

From this, we define the polymer model partition function as

Ξ =
∑

Γ compatible polymers

∏
γ∈Γ

wγ

Exercise: Show that ZG(q, β) = qnΞ.
We will do cluster expansion on Ξ. We prove that the cluster expansion converges using

the following:

Theorem 3.4 (Kotecký–Preiss). If there exist f, g : {polymers} → [0,∞) such that for all
polymers γ, we have ∑

γ′ ̸∼γ

wγ′ef(γ
′)+g(γ′) ≤ f(γ)

then the cluster expansion for Ξ converges.

We again try to analyze the size of the summation. Given a polymer γ, by our definition,
γ′ ̸∼ γ iff dist(γ, γ′) ∈ {0, 1}. In either case, γ′ must contain a vertex in NG[γ] = NG(γ) ∪ γ,
(the closed neighborhood of γ). Thus, we can rewrite the KP condition sum as∑

γ′ ̸∼γ

“ =
∑

u∈NG[γ]

∑
γ′∋u

“ =
∑

u∈NG[γ]

∑
b≥d

∑
γ′∋u,|∇(γ′)|=b

“

where in the last term, we split up the polymers γ′ by their boundary size. The reason we do
this is to use the following lemma:

Lemma 3.5. Let G be a d-regular η-expander and let x ∈ V . The number of A ⊂ V such
that A is connected, |A| ≤ n

2
, |∇(A)| = b, and x ∈ A is at most dO(1+1/η)b/d

We call this a container-like lemma since the proof comes from identifying a “container”
A0 associated with each set A, and computing bounds on the number of A corresponding to
each A0 as well as the number of containers A0.
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3.2 Lecture 3 References

• algorithms from the cluster expansion (Helmuth, Perkins, Regts): https://arxiv.org/
abs/1806.11548

• the Potts model on expanders (Carlson, Davies, Fraiman, Kolla, Potukuchi, Y.): https:
//arxiv.org/abs/2204.01923

• random cluster model on random regular graphs (Helmuth, Jenssen, Perkins): https:
//arxiv.org/abs/2006.11580

• Karger’s algorithm: lecture notes of Eric Vigoda, https://faculty.cc.gatech.edu/

~vigoda/7530-Spring10/Kargers-MinCut.pdf

3.3 Lecture 3 Exercises

1. (a) Fill in the details for the Coloring Lemma proof (mainly, verify the computations).

(b) Adapt the coloring lemma proof to produce an algorithm for finding a min-cut of
a graph (i.e. a minimum-size set of edges whose removal disconnects the graph).
This is Karger’s algorithm.

2. Given a graph G, consider the random cluster model, a distribution on {0, 1}E(G) with
parameters q, β ≥ 0 whose Gibbs measure and partition function are defined by

µG(A) ∝ qc(A)(eβ − 1)|A|

ZG(q, β) =
∑
A⊂E

qc(A)(eβ − 1)|A|

c(A) denotes the number of connected components of (V,A). (Observe that by setting
p := 1− e−β, this is related to bond percolation with probability p.)

(a) Conjecture a relationship between the random cluster partition function and the
q-color Potts model partition function.

(b) Prove your conjecture holds by demonstrating a coupling between the Potts and
random cluster distributions for integer q (meaning, describe a method for obtain-
ing a random cluster configuration from a Potts configuration with the correct
probability, and vice versa)

3. Consider the hard-core model on a family of graphs that is closed under taking sub-
graphs.

(a) Define a process to choose an independent set at random by considering the vertices
ofG one at a time, in order, and use this to show that efficient approximate counting
on the family implies approximate sampling.
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(b) Write µG(∅) in two ways to show that approximate sampling implies approximate
counting.
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4 Solutions to Exercises

4.1 Lecture 1 Solutions

1. Write the hardcore model as a spin model on a graph by determining the Hamiltonian
and Gibbs measure.

Solution: Let Ω = {0, 1}. Let f(σv) = −(log λ)σv and let g(σu, σv) be ∞ if σu = σv = 1
and 0 else. Then if σ is a configuration where {v : σv = 1} is not independent, then
there exist some uv ∈ E such that g(σu, σv) = ∞ so H(σ) = +∞ and µG,λ(σ) ∝ 0.
Else, if I := {v : σv = 1} is independent, then H(σ) = |I|(− log λ). Taking β = 1, we
get µG,λ(σ) ∝ e−β|I|(− log λ) = λ|I| as desired.

2. Compute the hard-core partition function for:

(a) Kd, the complete graph (clique) on d vertices

(b) Kd,d, the complete d-regular bipartite graph (two sets of d vertices L and R with
all d2 edges between L and R present and no others)

(c) C6, the cycle on six vertices

Solution: For (a), observe that the only independent sets are the empty one and single-
tons, so ZKd

(λ) = 1 + dλ.

For (b), the independent sets consist of all subsets of L and all subsets of R. Each side
has 2d independent sets, but adding these double-counts the empty set, so ZKd,d

(λ) =

2
∑d

k=0

(
d
k

)
λk − 1.

For (c), ZC6(λ) = 1 + 6λ+ 9λ2 + 2λ3.

3. Problem: Let G = G1 ∪G2, the disjoint union of two graphs G1, G2. Prove that

ZG(λ) = ZG1(λ)ZG2(λ) .

Solution: Observe that I ⊂ V (G) is independent if and only if it can be written as
I1 ∪ I2 where I1 ∈ I(G1), I2 ∈ I(G2). The statement follows.

4. Prove the following claim we used in the Peierls argument for phase coexistence of the
low-temperature Ising model on Z2: Fix a contour γ⋆ containing 0 in its interior. Let
µ+
Λn

be the Gibbs measure defined on collections of contours on the n× n box with all +
boundary conditions. Show that ∑

Γ∋γ⋆

µ+
Λn
(Γ) ≤ e−β|γ⋆|
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Solution: The notes give a hint to pull out e−β|γ⋆| from the numerator, which gives us

µ+
Λn
(Γ) =

∏
γ∈Γ e

−β|γ|∑
Γ′
∏

γ∈Γ′ e−β|γ| = e−β|γ⋆|

∑
Γ∋γ⋆

∏
γ∈Γ\γ⋆ e−β|γ|∑

Γ′
∏

γ∈Γ′ e−β|γ|

It is enough to show that the fraction above is at most 1. We can do this by defining
an injection from terms in the numerator to terms in the denominator. For each term
counted in the numerator i.e. Γ ∋ γ⋆, produce a contour collection Γ′ by removing γ⋆

and reversing all the spins in Int(γ⋆). This gives an injective correspondence to the
terms counted by the denominator.

5. Show that the number of contours of length k with 0 in its interior is at most k
2
· 4 · 3k−1

(this type of estimate is often referred to as Peierls’ method).

Solution: Let γ be a contour of length k containing 0. Since γ consists of edges in the dual
lattice, there must be some point (x− 1/2, 1/2) contained in γ where x ∈ {1, . . . , [k

2
]}.

Let this be the “starting point” of γ. We then count the number of possible γ by
counting the number of ways to “walk” along γ given the starting point. There are 4
directions to proceed in from the first step, and for each subsequent step, there are 3
possible directions, giving 3k−1.

6. Consider bond percolation on Z2 with probability p (include each edge independently with
probability p; the included edges are sometimes called open edges). Let C(0) denote the
connected component containing 0. Define the threshold

pc = sup{p ∈ [0, 1] : Pp(|C(0)| = ∞) = 0}

Use Peierls’ method (namely, the previous exercise) to show that pc < 1.

Solution: See Perla Sousi’s lecture notes (linked in the references) for this proof as well
as more discussion. The idea is to perform bond percolation on the dual lattice where
a dual edge is open iff the edge it crosses from Z2 is open. Observe that |C(0)| < ∞ if
and only if 0 is contained in a cycle of the dual (the “contours” in this context). Now
use a first moment bound on the probability that |C(0)| < ∞ and apply an estimate
involving the number of dual cycles of length n containing the origin. The conclusion
is that for p large enough—say p > 1− δ, then P(|C(0)| < ∞) < 1− ϵ so pc ≤ 1− δ.

4.2 Lecture 2 Solutions

1. Prove that the following probability distribution on independent sets of G is the hard-
core model on G at fugacity λ. Pick a subset S ⊆ V (G) by including each vertex
independently with probability λ

1+λ
and condition on the event that S is an independent

set.
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Solution: For S ⊂ V (G), the probability of choosing S in this distribution is

P[S] =
(

λ

1 + λ

)|S| (
1

1 + λ

)n−|S|

The probability of choosing an independent set in this distribution is∑
I∈I(G)

(
λ

1 + λ

)|I| (
1

1 + λ

)n−|I|

=
ZG(λ)

(1 + λ)n

So the probability of choosing a fixed independent set I is

P[I] =
(

λ

1 + λ

)|I| (
1

1 + λ

)n−|I|

· (1 + λ)n

ZG(λ)
=

λ|I|

ZG(λ)

as desired.

2. Let ik(G) be the number of independent sets of size k in a graph G.

(a) Give a probabilistic interpretation (as, say, an expectation) for the quantity ik+1(G)

ik(G)

in terms of the uniform distribution over independent sets of size k in G.

(b) Prove that for all G of maximum degree ∆ on n vertices,

ik+1(G)

ik(G)
≥ n− (∆ + 1)k

k + 1
,

and find a family of graphs for which the inequality is tight.

(c) Use the above to prove that for all G of maximum degree ∆ on n vertices,

1

n
logZG(λ) ≥

1

∆ + 1
log(1 + (∆ + 1)λ) ,

and show that the inequality is tight. (Hint: recall that partition functions are
multiplicative over disjoint graphs and that ZG(λ) is a polynomial).

Solution: For (a): Let Ik(G) be the collection of independent sets of size k in G. Define
a random variable X : Ik(G) → R where X(I) is the number of independent sets of size
k + 1 containing I. Then

EX =
∑

I∈Ik(G)

X(I)Pr(I) =
∑
I

X(I)
1

ik(G)

Observe that each element of Ik+1(G) contains exactly k + 1 independent k-sets, so∑
I X(I) counts each element of Ik+1(G) exactly k + 1 times. Thus,

EX =
(k + 1)ik+1(G)

ik(G)

21



For (b): For I ∈ Ik(G), let N(I) =
⋃

v∈I N(v). Then

|N(I)| ≤
∑
v∈I

|N(v)| ≤ k∆

Every vertex in V \ (I ∪N(I)) can be added to I to make an independent (k + 1)-set.
Thus, the number of independent (k + 1)-sets containing I is

X(I) = n− (k + |N(I)|) ≥ n− (∆ + 1)k

This implies EX ≥ n− (∆ + 1)k, and by part (a), we have

ik+1(G)

ik(G)
≥ n− (∆ + 1)k

k + 1

This inequality is tight if |N(I)| =
∑

v∈I |N(v)| = k∆ for all I ∈ Ik(G), which is
achieved when N(I) = ⊔v∈IN(v) and |N(v)| = ∆ for all v. This holds when G is the
disjoint union of n

∆+1
copies of K∆+1.

For (c): LetH = H(∆, n) be the disjoint union of ∆+1 copies ofG, and letK = K(∆, n)
be the disjoint union of n copies of K∆+1. Since partition functions are multiplicative
over disjoint graphs, we have

ZH(λ) = (ZG(λ))
∆+1, ZK(λ) = (ZK∆+1

(λ))n

From Lecture 1 Exercise 2(a), we know that ZK∆+1
(λ) = 1 + (∆ + 1)λ, so the claim

is equivalent to showing ZH(λ) ≥ ZK(λ) for all λ. In fact, we will show a stronger
statement—that the inequality holds on the level of coefficients.

For k = 1, we have i1(H) = i1(K) = n(∆+1). For k ≥ 2, ik(K) =
(
n
k

)
(∆+1)k, whereas

we can inductively/recursively apply the bound from part (b) to get

ik(H) ≥ n(∆ + 1)− (k − 1)(∆ + 1)

k
ik−1(H)

≥ · · · ≥ (n− k + 1)(∆ + 1)

k
· (n− k + 2)(∆ + 1)

k − 1
· · · n(∆ + 1)

1

=

(
n

k

)
(∆ + 1)k

Thus, ik(H) ≥ ik(K) for all k, which implies ZH(λ) ≥ ZK(λ), proving the claim. The
bound is tight since we can take G = K∆+1 to get H = K.

4.3 Lecture 3 Solutions

1. (a) Fill in the details for the Coloring Lemma proof (mainly, verify the computations).
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(b) Adapt the coloring lemma proof to produce an algorithm for finding a min-cut of
a graph (i.e. a minimum-size set of edges whose removal disconnects the graph).
This is Karger’s algorithm.

Solution: For (a), the main observation is that the mincut size of G is at least d (by
d-regularity and 2-expansion) and this does not decrease with edge contractions. So at
each step of the edge contractions, if the graph has m vertices, it must have at least
md/2 edges.

For (b), see notes linked in the references.

2. Given a graph G, consider the random cluster model, a distribution on {0, 1}E(G) with
parameters q, β ≥ 0 whose Gibbs measure is defined by

µG(A) ∝ qc(A)(eβ − 1)|A|

ZG(q, β) =
∑
A⊂E

qc(A)(eβ − 1)|A|

c(A) denotes the number of connected components of (V,A). (Observe that by setting
p := 1− e−β, this is related to bond percolation with probability p.)

(a) Conjecture a relationship between the random cluster partition function and the
q-color Potts model partition function.

(b) Prove your conjecture by demonstrating a coupling between the Potts and random
cluster distributions for integer q (meaning, describe a method for obtaining a ran-
dom cluster configuration from a Potts configuration with the correct probability,
and vice versa)

Solution: Let ZRC
G be the random cluster partition function and ZP

G be the Potts
partition function. The coupling can be described as follows: Given a random clus-
ter configuration A, produce a q-coloring σA by coloring each connected component
with one of the q colors uniformly at random. The distribution of this coloring is
µRC
G (A)q−c(A) ∝ (eβ − 1)|A|

Given a Potts configuration σ : V → [q], we produce a random cluster configuration as
follows: for each monochromatic component, do percolation on that component with
probability p = 1− e−β.

3. Consider the hard-core model on a family of graphs that is closed under taking subgraphs.

(a) Define a process to choose an independent set at random by considering the vertices
of G one at a time, in order, and use this to show that efficient approximate
counting on the family implies approximate sampling.

(b) Write µG(∅) in two ways to show that approximate sampling implies approximate
counting.
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Solution: For part (a): Order V (G) as v1, v2, . . . , vn. For each i, we flip an independent
coin to decide if vi is in I. Let Ij be the partial independent set after considering
v1, . . . , vj.

Let N [v] denote the closed neighborhood of v. We add v1 with probability

P(v1 ∈ I) =
λ · ZG−N [v1](λ)

ZG(λ)

And in general we add vk with probability

P(vk ∈ I|I ∩ {v1, . . . , vk−1} = Ik−1) =
λ · ZG−{v1,...,vk−1−N [Ik−1]−N [vk]

ZG−{v1,...,vk−1}−N [Ik−1]

Using the FPTAS for computing ZG (and its subgraphs), we can calculate an ϵ
n
approx-

imation for each of the conditional probabilities so that our final error is ϵ.

For part (b), observe that µG(∅) = 1
ZG(λ)

so to obtain an ϵ-relative approx for Z, it’s

enough to find one for µG(∅). We also have

µG(∅) =
n∏

i=1

PG−{v1,...,vi−1}(vi /∈ I)

Each of the marginals can be approximated by repeated sampling from the hard-core
model, which we assume we can do efficiently.
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